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TWO-PHOTON COHERENT STATE LIGHT -

ITS GENERATION AND POTENTIAL APPLICATIONS

APFROVD FOR PUBLIC RELEASE
DISTRIBUT1ON UNLIMIT-D

Abstract

Recent work has highlighted the potential applications of two-

photon coherent states (TCS), also known as squeezed states, in optical

communications and precision measurements. This research program was

aimed at generating TCS light via degenerate four-wave mixing (DFWM),

and verifying the non-classical nature of TCS light via photon-

counting measurements. The preceding experimental work was supported .

by analytical studies of DFWM TCS generation, and quantum photodetection.

In addition, analyses were performed of key proposed TCS applications in

optical communications and phase-sensing interferometry. Although the

experimental effort did not yield any TCS observations, it did succeed

in providing the first quantum-noise limited measurements obtained from

DFWM. Moreover, the associated theoretical effort clarified pump quantum --

noise, probe-conjugate loss, and backward vs forward DFWM issues in TCS

generation. Furthermore, the applications research developed simultane-

ous amplitude and phase uncertainty relations for optical heterodyne

detection, and showed explicitly how to use TCS to surpass the so-called

standard quantum limit (SQL) on position sensing in a gravity-wave

detecting interferometer.

..... ..
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RESEARCH SUMMARY

A highly stabilized laser produces a light beam in a Glauber coherent

state. This means the beam is endowed with the following quantum fluctua-

tion behavior: photon counting measurements are Poisson distributed hence

the count variance equals the count mean; and homodyne measurements are

Gaussian distributed with signal-to-noise ratio equal to four times the

average number of received photons. Furthermore, the observed fluctuation

behavior for any laser, light-emitting diode, or ordinary light source can

be accounted for by averaging the preceding results over a classical ensemble

representing the light beam as a random mixture of coherent states. These

results form the foundation for all of the semiclassical optical detection

and communication analyses. L

Recent theory has shown that the generation of light beams with quantum

states of superior fluctuation behavior, relative to Glauber coherentstates,

may be possible. These states are called two-photon coherent states (TCS),

or squeezed states. They are basically minimum uncertainty states for the

quadrature components of the electromagnetic field possessing an asymmetric

noise division between the quadratures, so that one quadrature has a "squeezed"

noise variance, i.e., it is less than the coherent state value of 1/4. In

photon counting measurements at high mean counts TCS light can have a count

variance as low as Ns2/ 3 , where Ns is the average number of received photons.

In homodyne measurements, because of the quadrature noise squeezing, TCS

light can have a signal-to-noise ratio as high as 4N (N +1).s s
Under this research program, we have undertaken an experimental effort

aimed at generating TCS light, and verifying some of its novel fluctuation

characteristics [1] -[5]. In concert with the experimental activity, we

have worked toward improving the theory behind TCS generation schemes [5]- [7],

I
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advancing understanding of quantum photodetection (especially as applied to

TCS light) [8],. [9], and analyzing potential applications of TCS in optical

communications [10] and phase-sensing interferometry [11], [12].

TCS Generation - Theory

Two-photon coherent states may be generated, in principle, by a variety

of nonlinear optical processes, including the degenerate parametric amplfier

(DPA) and degenerate four-wave mixing (DFWM). The essence of generating

TCS may be stated simply as follows. For a single-mode field with annihila-

tion operator a, mix a part of this field with its phase conjugate field

represented by the creation operator a to create a new mode represented by

the operator C such that
p

c =-- + , (U+.1)

where Ia 2 _ 1v12 1 ensures thatc is an annihilation operator. Then, if

the mode a is in a coherent state (CS), the mode c will be in a TCS. Thus, _

a physical process that generates a phase conjugate field for some input

field is a possible candidate for generating TCS light. DFWM is such a

process, and was suggested by Yuen and Shapiro [13] as a possible source of P

TCS. In the standard backward DFWM geometry treated in [13], two counter-

propagating pump waves intersect an object (probe) wave at a small angle in

a nonlinear medium possessing a third order (x(3 ) nonlinearity. All three

waves are at the same frequency. A phase-matched interaction in the non-

linear medium generates a phase-conjugate (PC) image wave which propagates

in the opposite direction to the object wave. The outputs of the four-wave "

mixer can then be separated by means of isolators, and combined through an

optical delay line with the proper phase relationships on a 50/50 beam

splitter. In a classical analysis, the complex field amplitudes, A1 and A2 ,  .

1 .2"..... . . .
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of the image and object waves obey the coupled-mode equations

dAl
dT 2 iK A (II.2a)

dA.
-iK A1  (II.2b)

where ic = 1 WX (3 )BIB 2/cn gives the complex coupling constant in terms of the

nondepleted pump waves of complex field amplitudes Bi and 82. Yuen and

Shapiro [13] gave a quantum version of the above treatment assuming that the

pump fields Bl and 82 are strong and can remain classical along with the

medium described by the third-order nonlinear susceptibility . They quan-

tized the object and the image modes replacing A. and A. with the photon

annihilation and creation operators a. and aj respectively, for j 1, 2.

Equation (11.2) then becomes

da tdl iK 2 (II.3a)

d- iK al (II.3b)

with the following solutions

al(O) = ual(L) - iva2t(O) , (II.4a)

a2(L) = ua 2 (0) - ivalt(L) , (II.4b)
-i 8 L, l i e a()and a(the

where u = sec(IlIL), v e tan(IIL), K = a 1(L)L 2(0) are the

input fields to the four-wave mixer at z = L and z = 0, respectively.

When the outputs of the four-wave mixer are combined through a 50/50

beam splitter to generate two new modes

c = al(0) - ia 2 (L)]/21/ 2 , (II.Sa)

/ 1/2. ..d a (0 + a (L)]/2 (II.5b).] -.

...-. .,..... .....- .. ...... .. ..-... ,..
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the solutions become

C P; c t I.a

i- V; (II.6b)in in

in terms of

cin [al (L) - ia 2 (0)]/2 1 / 2 , (II.7a)

d = [a1(L) + ia 2 (0)]/2 11 2 ' (II.7b)

which are linear combinations of the input modes to the four-wave mixer.

Equation (11.6) is of the same form as (II.1) and Jul 2 - (v2 = 1, so that

the modes c and d are in TCS if al(L) and a2 (O) are in CS.

The above analysis indicates that backward DFWM is a source of pure TCS.

Depending upon the phase and magnitude of v, arbitrary noise squeezing is

predicted to be obtained in one of the quadratures of mode c or mode d. In

a real experiment, this is not quite so because of the assumptions made in

arriving at (11.3). In particular, the pump modes B1 and B2 cannot neces-

sarily be considered classical, and the effects of their quantum amplitude

and phase fluctuations on modes c and d should be calculated. Moreover, the

preceding analysis neglects loss, which is known to have a strong effect on

quantum statistics.

In C5], C6] we have reported our analyses of generalizing the Yuen and

Shapiro model to encompass pump quantum noise in a lossless backward DFWM

setup, and loss on the probe and conjugate beams in backward DFWM in the

absence of pump quantum noise. Both of these studies focused on the quadra-.--

ture noise squeezing in the output modes c and d from (11.6). In particular,

for the quadrature variance <Ac > <A +c t )1212> it was shown that the

Yuen and Shapiro result is obtained in a lossless case with pump quantum
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noise included if the pump beams are very intense (1BII = 182 --B21 ) the

coupling is very weak (2-1 X (3)/cn 0 ) and the gain is constant

(IKIL = constant). Thus, pump quantum noise places no fundamental limitation

on TCS generation.

The results obtained for <a l2> in backward DFWM with probe-conjugate

loss were not so favorable. Here it was found that even a moderate amount

of such loss (e.g., loss coefficient y = 0.5/L) severely limited the obtain-

able noise squeezing. Thus, loss presents a severe restriction on the use of

resonant-medium backward OFWM as a TCS generator.

In an attempt to circumvent the preceding limitation, we turned our

attention from backward DFWM to forward DFWM [7]. In forward DFWM, two

strong pump beams propagate at small angles ± 0/2 from the +z axis in a X(3)

medium. A phase matched interaction ensues between probe and conjugate waves

at angles ± 0/2 from the +z axis in a plane obtained by rotating the pump-

beam plane through an arbitrary angle about the z axis. This nominally co-

propagating geometry, when analyzed quantum mechanically along the lines of

the Yuen and Shapiro backward DFWM case, yields

al(L) = pa,(O) - iva2 (O) (II.8a)

; 2 t(L) = u 2 (0) + iv*al(O) , (II.8b)

for the output annihilation operators at z = L in terms of the input annihila-

tion operators at z 0, where v cosh (IcIL), v e sinh (IlIL) and

= ie Defining new output and input modes via (cf. (11.6), (11.7))

c [al(L) - ia2(L)]/2 (II.9a)

= al(L) ia 2 (L)]/21 / 2 , (II.9b)
2
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and

Cin al() - ia2(0)]/2' , (11.1a)

din Ca [l(O) + ia2(0)]/2 /2(II.1b)

yields

^ i a (II.lla)

n i

and

Sain + Vain (II.llb)

Thus, for lossless forward DFWM with no pump quantum noise ideal TCS genera-

tion results from 50/50 interferometric combination of the two output beams.

We have not explicitly examined the pump quantum noise behavior of for-

ward DFWM; we expect it will mimic that of backward DFWM. We have shown,

however, that probe-conjugate loss does not present a fundamental limit on

obtainable quadrature noise squeezing from forward DFWM. This is because

the counter-propagating geometry of backward DFWM causes a looping of loss-

induced quantum noise in the interaction medium that is absent in the

co-propagating geometry of forward DFWM. Thus, forward DFWM is a more promis-

ing TCS generator than is backward DFWM.

TCS Generation -Experiment

We chose to pursue TCS generation experimentally via backward DFWM in

sodium vapor. (This work was initiated before our loss analysis was

(3)completed.) Because OFWM occurs through the third-order nonlinearity x

of the mixing medium, we employed a pulsed optical system and exploited the

(3)resonant enhancement of sodium x in the vicinity of 589 nm wavelength D2

transition in order to access the high reflectivity regime. Furthermore,

because a pulsed experiment did not lend itself to homodyne detection, we
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used photon counting to look for anti-bunching (i.e., second reduced factorial

moment g2 less than unity) in light that had undergone DFWM. No previous DFWM

experiments had ever tried to look at quantum noise; it turned out that our

initial OFWM quantum-noise experiment was overconstrained by a combination of

factors, as elaborated below.

The experiment comprised three subsystems: a continuous-wave oscillator/

pulsed-amplifier chain dye laser, a heat-pipe oven sodium vapor cell, and a

special purpose photomultiplier tube/computer data acquisition photon counting

setup. The laser system [2] was developed to approach insofar as possible the

stable center-frequency transform-limited pulse train needed for eliminating

classical excess fluctuations in the DFWM conjugate output beams [4]. The

photon counting system C1] was assembled to permit accurate photon statistics

determination from the nanosecond duration pulses produced by the laser. As

described in [3], [5] background light from the sodium cell had to be reduced

to less than one detected photon per pulse, by means of spatial filtering, ....

time gating, and adjustment of DFWM pump strength and pump/probe angular sepa-

ration, in order to make the desired quantum noise measurements. The result

was that we had to operate in a low-reflectivity regime for which Poisson

statistics (g2=l) were expected. Our measurements confirmed the Poisson

behavior [3], C5], indicating that we were able to reduce excess fluctuations

to acceptably low levels, thus demonstrating the first quantum-limited noise

measurements obtained on a DFWM output beam.

Quantum Photodetection

As an adjunct to the detection aspects of the TCS generation work, and .

as a foundation for TCS applications research in optical communications and

precision measurements, a number of new theoretical results were developed

in the area of quantum photodetection. Building from Cook's photon flux

picture of photodetection [14], we relaxed [8), [9] the quasimonochromatic

• " .. . . . . . . . . . . . . . . . . .



- 21 -

condition in Yuen and Shapiro's operator representations [15] for direct

detection, homodyne detection, and heterodyne detection, and extended [8) the

coherent detection results of [15] to include dual detection configurations

(cf. [16]) and local oscillator excess noise. Moreover, the results of [8]

were -couched. in terms which made comparison with familiar multi-mode semi-

classical shot noise particularly simple. Finally, in [9], we showed that

multi-mode TCS permit heterodyne detection amplitude and phase measurements

to be made simultaneously without being subject to any uncertainty principle.

This phenomenon has applications in precision measurements (see below).

Optical Communications with TCS

Helstrom [17], [18] found the optimum quantum measurement operator for

deciding between equally likely density operators p0 and p1 for the state of

a quantized signal field to be as follows. The minimum error probability

decision rule chooses hypothesis Hj (i.e., state p.) when the outcome of mea-

suring u(pl - p0) is j, where u(x) is the unit step function. Helstrom also

showed that the error probability of this receiver obeys

Pr(e) = 2"{l - [ - / 2  , (I.12)

for the pure state problem pj= l'j><jI. Kennedy [19] and Dolinar [20] later

deduced realizations for exponentially optimum and exactly optimum receivers,

respectively, when the I,?> are coherent states, using conditional Poisson

process photodetection models. Shapiro [21], using the representation theorem

from [15], was able to explicitly develop the operator description of the near-

optimum receiver. In this program we have extended the work of Kennedy, Dolinar,

and Shapiro to the detection of binary two-photon coherent state signals.

"..,..,.-..-.L ....... .-.-.-... i-.,- ~ ~...' . . .. ,.,..-..,.... .... i.... ,,... .... ..... I
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In comparison with coherent state signals TCS offer significant communi-

cation performance advantages, e.g., (11.12) reduces to

2 " 1{1 - [l - exp(-4Ns)]l/2} ,

for coherent state ITj>

Pr(e) = (11.13)

2-l{l - [l - exp(-4N s(Ns+l))]I/ 2  ,

for optimized TCS 1vj>

of average energy content Ns photons. We have developed a general explicit

realization for the u(pI - po) measurement for TCS signals [10]. Our construc-

tion of the optimum TCS measurement combines the operator transformation prop-

erties of the idealized four-wave mixer in [13] first with the near-optimum

operator analysis in [21] and later with a quantum version of the Dolinar

work [20].

Phase-Sensina Interferometry

The performance of phase-sensing interferometers employin.: TCS and homo-

dyne detection were analyzed [11], [12] and compared to the performance of

systems employing direct detection [22]. Standard differenced direct-detection

Michelson and Mach-Zehnder interferometers were shown to be sub-optimal in the

sense that an observationfmeasurement-noise coupling occurs, which can degrade

performance. Homodyne-detection interferometers in which the phase shift in

one arm is the conjugate of that in the other arm do not suffer from the pre-

ceding drawback. Overall, however, the performance of differenced direct-

detection and homodyne-detection interferometers is similar in single-frequency

operation. In particular, both detection schemes reach the standard quantum

limit on position measurement sensitivity in single-frequency interferometric

gravity-wave detectors at roughly the same average photon number. This limit

. °., -.
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arises from back action in the form of radiation pressure fluctuations entering

through the energy-phase uncertainty principle. Multi-frequency devices can

circumvent this uncertainty principle, as was illustrated by the conceptual

design we have given for a two-frequency interferometer which can greatly surpass

the standard quantum limit on position sensing. This interferometer relies on

the heterodyne results developed in [9], and complements recent work of Yuen [23]

on the validity of the position-sensing SQL.
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APPENDIX I

SQUEEZED STATE GENERATION VIA FORWARD DEGENERATE FOUR WAVE MIXING

S

Prem Kumar and Jeffrey H. Shapiro

Research Laboratory of Electronics

Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

Degenerate four wave mixing (DFWM) has been suggested as a possible

generation scheme for squeezed state light, A recent analysis of the

quantum effects of probe-conjugate loss in backward DFWM has shown that

such loss puts an absolute limit on the squeezing that can be obtained

via this generation scheme, In this communication we show that it is

the counter-propagating beam geometry of backward DFWM that makes it

ill suited for squeezed state generation. On the other hand, the nomi-

nally copropagating beam geometry of forward DFWM is shown to alleviate

the absolute probe-conjugate loss limit on squeezing.

PACS Headings: 42.50. + q, 42.65. - k, 05.30. -d

..........................................................-
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I. Introduction

Degenerate four wave mixing (DFWM) has been suggested by Yuen and Shapiro as

a possible source for squeezed state generation I. Their model was a simple exten-

2sion of the classical description of DFWM given by Yariv and Pepper 2. Quantizing

only the probe and the signal beams while retaining classical descriptions for

the pump beams and the nonlinear medium, they showed that a two-photon coherent

state (TCS) (essentially a minimum uncertainty squeezed state) is obtained by a

50/50 combination of the phase conjugate reflected beam and the transmitted probe

beam from backward DFWM. A recent analysis by Bondurant, Maeda, Kumar and

Shapiro has shown that probe-conjugate loss puts an absolute limit on the squeez-

ing that can be obtained via backward DFWM3 . Since then Reid and Walls have
4I

given a fully quantum mechanical treatment of backward DFWM4 . Their analysis

neglected the spatial propagation effects and showed that pump induced spontane-

ous emission limits the amount of squeezing achievable. In this communication

we show that the absolute limit on probe-conjugate loss is because the preceding

work all addressed backward DFWM, which has a counter-propagating beam geometry.

This geometry is ideal for correcting phase aberrations via conjugate-wave genera-

tion, but is ill-suited for squeezed state generation because of the afore-mentioned

probe-conjugate loss limit. We show that forward DFWM, which has a nominally

copropagating nonplanar beam geometry, removes the absolute probe-conjugate loss

limit. Such an interaction geometry has been applied recently in studies of pres-

5sure induced four wave mixing interactions

In section II we start with a classical analysis of forward DFWM. It is

well known that large nonlinearities are obtained when the operating frequency

is chosen near an atomic or molecular resonance. Therefore, in section III, we

develop a semi-classical treatment of forward DFWM in an atomic medium con-

sisting of an ensemble of stationary two-level atoms. In section IV we quantize

I .
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the electromagnetic fields and examine the squeezing behavior of the output

beams.

II. Classical Equations

Consider the geometry shown in fig. 1. Two weak waves of wavevectors

k and k2  propagate at small angles + 0/2 from the z direction, determining

a plane P. The pump waves of wavevectors k3 and k4 also nominally propagate

along the z direction; I and - are obtained from T and I2 by rotating3 41 2
the plane P along the CC' axis. With this choice of wavevectors we note that

Vl +T = -F3 + k4 , i.e., the phase matching condition is satisfied.

The fields are taken to be co-polarized6 plane waves of angular frequency

E (T,t)= 1 j (rj)exp[i(ct-Tj-')] + C.c. (1)

where r. denotes the distance measured along kj. Following Yariv and Pepper2

we can derive the following equations for coupled modes 1 and 2

dAl d :
A 2 - i cA2 * Al, (2)

where K is the nonlinear coupling constant given by (mks units)

K (3) A3A4/2cncos, (3)

(3)
x is the third order susceptibility of the nonlinear medium, c is the

speed of light in vacuum and n0 is the background refractive index. Equation

(2) has the following solution

AI(z) : cosh(j<1z) AI(O) - i - sinh( <jz) A2 (O), (4a)

A (z) cosh(i<,z) A*() + i sinh( .<z) A(O), (4b)

in terms of boundary conditions at z : 0.
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III. Collisionless Two Level Medium

We now consider an ensemble of stationary two level atoms forming the

nonlinear medium. The atoms are characterized by a dipole moment, u, and

longitudinal and transverse relaxation times Tl and T2 respectively. Follow-

ing Abrams and Lind 7 we obtain the following equations for the coupled modes

1 and 2

dA dA2  _YA + (5)
d = "yA = + A A1

where

2 o ,, 0 + 6 2)

14o 4 1 cos(0/2) (6)+ 2+IA3I+ IA4r -

and

* 2a i) 2A3A4  (7)
n o +62+ A 312+jA 2\ As2COS((/2)

0= (W-o)T2 is the normalized detuning from line center, A s2 A 2/TIT 22 is

proportional to the line-center saturation intensity, Lo is the atomic transition

frequency, o : *~ T2_ /2EoCc is the line-center small-signal-field0 o 2 o o
attenuation coefficient,. No = (N 1-N2) is the equilibrium population difference

in the absence of the applied fields, n is the saturated refractive index

given by



2 2 2 2c%0c 6(1+62) 2 22k c2  ( no 2 20)_ (8)
k 2= (n W 6+62 + A31

2 + A4 1
2  2 c2

and k is the magnitude of the propagation vectors in the medium. We note that

the pumps are nominally copropagating, so that no sp-tial averaging along the

pump direction is required. Such averaging drastically reduces the DR4M

reflectivity in the conventional counter-propagating pumps geometry 7

Equation (5) yields the following solution,

Al(z) = e"Yz [cosh(H((z) Al(O) - i - sinh(Iclz) A2(O)] (9a)
IKcI

A2 *(z) = e"yz Ei ' sinh(lclz) A (0) + cosh(jicz) A*(O)I, (9b)

in terms of boundary conditions at z = 0.

IV. Squeezed Sta-.e Generation

A. Lossless Case

In giving a quantum treatment of backward DFWM, Yuen and ShapiroI replace

the complex field amplitudes A. and A. with the photon annihilation and

creation operators aj and a' , respectively, for j = 1,2. They assume that

the pump fields A3 and A4 are strong and hence can be treated classically.

They also describe the medium by a classical third order susceptibility.

Using their approach for our forward DFWM geometry we replace Eq. (2) with

daI = ± da(
a , .,1

•Z 2 :
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which has the following solution for a z=O to z=L interaction

al(L) = ual(O) - iva (O) (Ila)

a (L) = vat(0) + iv a,(O). (llb)

Here u = cosh(bIKL), v = &i'sinh(kI(L), < KleiG, 81(0) and a2(0) are the

input field operators at z = 0. The outputs at z = L are combined through

a 50/50 beam splitter to generate two new modes described by annihilation

operators c and d such that

c = [al(L) - ia2(L))/21/
2  (12a)

d = Cal(L) + ia2(L)]/2
I/2, (12b)

in terms of which the solutions become

C = Cin - Cin d = udin + And

where Cin = al(O) - ia2(0)]/2 1 2  (14a)

din = [al(O) + ia2(0)]/21 /2  (14b)

are annihilation operators describing field modes obtained by linear combination

of the input modes to the four-wave mixer. Because IWI -M2=1, it follows

that c and d are in TCS if al(O) and a2(0) are in coherent states (CS). 8

B. DFWM in a lossy medium

It was shown in section IV A that modes c and d are in TCS. Let us

concentrate on the quadrature noise behavior of mode c. Let cI - 2 and1 2

c2= c-c be the in-phase and out-of-phase quadratures of mode c, respectively.

Then from Eq. (13) one can show that the quadrature variances are
<,C 2  - < i < i )2> 2 ''

2> <(c-<CI>)2 2/4 (15a)

<_c 2> <(c2.<c2>)2> 2/4 (15b)
2 2 -- 2. . . . . . . . . . . . . . .
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when a1 (0) and a2(0) are in CS
8. Thus arbitrarily large squeezing is obtained

in c1 when Jvj is made arbitrarily large with u,* real and positive. Large

values of Jlv have been shown to be obtainable in resonant media, such as

described in section IIIg. An inspection of Eqs. (6), (7) together with the

defining equations for v and v shows that a large value of lvi is necessarily

accompanied by a large value of y, the loss per unit length in the medium.

We follow the approach of Bondurant et al.3 to analyze the effect of this

probe-conjugate loss on the squeezing obtainable via forward DFWM in a resonant

medium.

We note that Eq. (10) can be obtained from the effective interaction

* Hamiltonian

HI = 4v(Ka2 + K aa l) (16)

using the Heisenberg equations of motion and then converting the temporal

differential equations into spatial differential equations by the change of

variable z = vt.

In order to account for probe-conjugate loss quantum mechanically we adjoin

the system of Eq. (16) to two reservoirs of loss oscillators described by

annihilation operators bS, for . = 1 to - and s = 1,2. The total effective

interaction Hamiltonian can therefore be written as

HT 2fiv[<aa <11 2 a2*i 1t

2 + <O , (17)
+ Z [as  + as  Z < b

sl Z=l IZ Zb '

-9o
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where K. represents the coupling between the modes of interest, i.e., a, and

a 2, and thie loss oscillator modes. From Eq. (17), we obtain two coupled

spatial differential equations for the slowly-varying operators a1 and a2

da1 2

= - T ic a 2  'G (z) (1 8a)

da t2 -ya t + iKa+ G (Z (8b)

where y is the lo~ss per unit length and G s(z), s =1,2 are Langevin noise

operators obeying

Ta z v KZ2  a s a(z')expI~i(w.-w)(z'-z)/v] dz' , s=1,2, (19a)
0

and

G5 (Z) I E zb s (0) exp~i (w-wy) z/v]; s1, 2 (19b)

respectively. These noise operators, under the Wigner-Weisskopf approximation,

obey the commutation rule

[G W), Gt(z) 2- 6 ,d(z-z') for s, s'=l,2. (20)s (') ss'

The set of equations (18) can be integrated with the result

a1(L) e&YL iCial(O) - iva 2t(0)J + r1(21a)

a (L) =e-yL[i,*a(0) + i.a (0)] 2 (21b)

where

e- iey(L-zI) [icsinhj(hc!)G(z'))iez + csh( d(L-z'))G (z')dz'. (22b)

0

The loss per unit length, -Y, appearing in Eq. (19a) is numerically the sane

as that in Eq. (6) for a medium consisting of stationary two level atoms.
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Operator equation (21) reduces to the classical equation (5) when expectation

values are taken.

To calculate the effect of probe-conjugate loss on squeezing, we construct

new modes as in Eq. (12) and evaluate the quadrature variances. As an example,

c e-YL[icin - Ctn + (rI - ir2)/Z
I/2 (23)

and

<&Cl2> - e-ZyL (_V) 2 + .(rll+r 22)2 > ; (24)

where rl= (rl+r t)12, r22 = (r2-r2
t )/2i and we have chosen pump phases such

that a = 0. After substituting Eqs. (22a) and (22b) into Eq. (24) and

evaluating the appropriate moments, we get

=A 2 y(2N+l) 1 -'2(Y+IKI)L[l" y(2N+l)n

1 l2> ( I ) e -Y+I I) (25a)

and

<22 _-y2 + ]. eT2(y- Jc ) L~l Nl "-> 4(N +1 (2. l)], (25b)

where N measures the initial excitation of the reservoir modes, i.e.,

N = <b L t (0) bs (0)>, and is assumed to be the same for all the modes.

Several cases of interest can now be considered.

i) y=O, i.e., the zero probe-conjugate loss limit, in which Eq. (25) reduces to

Eq. (15) and ideal squeezing is obtained.
1 2 2

ii) yO,-(<j 1K and L > " In this limit <Ac 2 > and <Ac2 >-

y(2+l)< , i e., for a given N ideal squeezing can be obtained by making 1<1 >> y

Though it should be noted that pump induced spontaneous emission noise will limit

this squeezing as is the case in backward DFWM as shown in Ref. 4.

iii) Y>I<! and L >> , In this limit <AC2> y2N+l4{.y - and <&c22>

2> 22N ~ 2
For N=O, i.e., when the loss oscillators are initially unexcited,4(-y- 2>4JK , ('-(, ))41.

we get <c 2> =1/4 and <Ac 22> 1 for y>>I<we getT
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This result is expected here because loss totally dominates the nonlinear

coupling and any quadrature noise asymmetry caused by the latter is swamped

by the fluctuations introduced by the former. In the case of y-(,cI, a squeezing

factor of 2 is still obtained in <aC 2>. The uncertainty product <Ac1 2><AC
2 >

2
(2N+l)2 /16(1- 1,2)> 1 implying that a squeezed state which is not a minimum

If 
*

uncertainty state is generated. Also, since for our choice of e, Uv is real,

this state is not a TCS either.

V. Discussion

The results of the previous section show that the DFWM beam geometry

plays an important role in determining the squeezing that can be obtained in

a realistic experiment. The nonlinear coupling introduces quantum noise

asymmetry between the quadratures of the interacting modes. In DFUM this

asyrinetry is between the quadratures of two different modes and mode mixing at

the output of the DFWM interaction is required to-obtain new modes, whose two

quadratures show this asymmetry. Probe-conjugate loss, on the other hand, intro-

duces independent fluctuations into the two quadratures which are coupled via the

* non-linear interaction, thus tending to equalize the observed output beam quadra-

ture fluctuations. The latter is the result of case (iii) in section IV, where

loss dominates the nonlinear coupling.

In the counterpropagating geometry of backward DFWM, the interaction

at any point couples forward and backward going waves. Because of loss,

,. each of these waves has suffered the noise-symmetrizing effect noted above.

It is the combination of the loss with the non-local nature (forward/backward

wave coupling at all points in the interaction medium) that is responsible,

we believe, for the severe loss-limit on backward DFWM squeezed-state

generation. On the other hand, in forward DFWM only forward going waves

are coupled. Although loss injects a symmetric noise contribution at each

w' point in the interaction medium, the nonlinear interaction from that point

. . .- *.

. .- ..
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to the end of the interaction squeezes that noise contribution. Thus, with

the forward interaction and gain coefficient in excess of the loss coefficient,

the only fundamental limit on achievable forward DFWM squeezing will be due to

pump induced spontaneous emission. Indeed, our view of the physics of this

problem is supported by Yuen's loss analysis for DPA squeezed state genera-

tion8 , which shows that in that forward-going three-wave interaction arbitrary

squeezing is obtained for any y and N so long as liH can be made arbitrarily

larger than y.

In summary, forward DFWM appears more promising than backward DFWM as a

squeezed state generator, It is a phase-matched interaction with no funda-

mental limit on squeezing due to probe-conjugate loss, Moreover, we expect

there will be differences in the limits on obtainable squeezing set by pump-

induced spontaneous emission in forward and backward DFWM, because of the

different physics of their spatial propagation characteristics, as described

above. Furthermore, since all the beams are propagating in roughly the same

direction, the interaction is not velocity selective. The participation of

all velocity groups results in a very large nonlinear interaction, Both

experimental and theoretical investigations of forward DFWM have recently

been published. 12  Phase conjugation and sub-Doppler resolution due to strong

saturation have been reported,

The authors acknowledge helpful discussions with R,S, Bondurant and

D.F. Walls, This work was supported by the Office of Naval Research Contract

N00014-81-K-0662.
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Figure Captions

1. Forward DFWM geometry.
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APPENDIX II

QUANTUM NOISE AND EXCESS NOISE IN OPTICAL
HOMODYNE AND HETERODYNE RECEIVERS

Jeffrey H. Shapiro

Department of Electrical Engineering and Computer Science
and Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

A parallel development of the semiclassical and quantum statistics of

multi-spatiotemporal mode direct, homodyne, and heterodyne detection using an

ideal (except for its sub-unity quantum efficiency) photon detector is presented.

Particular emphasis is placed on the latter two coherent detection configurations.

The primary intent is to delineate the semiclassical theory's regime of validity

and to show, within this regime of validity, how the quantum theory's signal

quantum noise, local oscillator quantum noise, the quantum noise incurred

because of sub-unity detector quantum efficiency, plus (for heterodyning only)

image band quantum noise produce the quantitative equivalent of the semiclassical

theory's local oscillator shot noise. The effects of classical fluctuations

on the local oscillator, and the recently suggested dual-detector arrangement

for suppressing these fluctuations, are treated. It is shown that previous

studies of this arrangement have neglected a potentially significant noise

contribution.

vimo 
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I. INTRODUCTION

In coherent optical detection [1] - [3], the optical field to be measured

is combined on the surface of a photodetector with the field of a strong

local oscillator laser whose center frequency is offset by an amount Av from

that of the signal field. The detection scheme is referred to as optical

homodyning if av=O, and optical heterodyning if Av -VIF>O, with vIF being the

intermediate frequency in the latter case. For both schemes, electrical

filtering of the photocurrent is used to select the beat frequency components

in the vicinity of av, yielding an output that contains a frequency translated

replica of the signal field components that were coherent in space and time

with the local oscillator field. Heterodyne detection is now widely employed

in coherent CO2 laser radars C4], [5], and is being vigorously researched for use

with semiconductor injection lasers in fiber optics [6] - [8] and space

communications £9], £I0]. Performance analyses in these areas routinely employ

the semiclassical statistical model for photodetection, which implies that the

fluctuations observed in coherent optical detection with signal and local

oscillator fields of perfect amplitude and frequency stability comprise an additive

white Gaussian noise, representing local oscillator shot noise.

It has long been known £ll] that the semiclassical statistics for photodetec-

tion are quantum mechanically correct only when the total field illuminating the

detector is in a Glauber coherent state or a classically random mixture of such

states. Inasmuch as ordinary light sources, including lasers and light emitting

diodes, obey this classical state condition, there is no need to abandon the

semiclassical approach in the vast majority of photodetection sensitivity

calculations. However, non-classical light has been generated via resonance

fluorescence, as confirmed by observations of its photon anti-bunching [12] and

sub-Poissonian behavior £13] in direct detection. Moreover, there is great

- . - . . -. .. . ,• .. . . , , .. .. .. * . n . .
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theoretical interest in squeezed states (also called two-photon coherent states)

[14), [15], which are non-classical states of considerable potential for optical

communications [16] - [19] and precision measurements [20] - [23]. For these

states, the quantum theory of photodetection is essential, and coherent optical

detection schemes are the most interesting.

In [18), Yuen and Shapiro developed the quantum descriptions of single-

detector optical homodyne and heterodyne receivers. They employed a quasimono-

chromatic approximation, and assumed a coherent state local oscillator,

corresponding to perfect local oscillator amplitude and frequency stability.

Within these limitations, complete statistics for multi-spatiotemporal mode detection

are available from [18). More recently [22], the fact that photodetectors respond

to photon flux rather than power [24] has been used to relax somewhat the

quasimonochromatic approximation in [18]. Thus, were high power, highly stable

local oscillator lasers available at all wavelengths of interest, the quantum

photodetection theory of [18] would provide a sufficiently general foundation for

all optical homodyne and heterodyne sensitivity calculations. Unfortunately,

such is not the case.

Driven by heterodyne-detection problems arising from the excess noise of

semiconductor injection lasers, Yuen and Chan [25] proposed a dual-detector

arrangement for coherent optical detection, akin to the balanced mixer concept of

microwave technology [26], [27]. They gave a direct quantum analysis of single-

mode dual-detector homodyning. showing that local oscillator quantum and excess

noises can be balanced out, hence alleviating injection laser problems that would

have plagued a single-detector system. In subsequent work by Chan and his

collaborators, the basic dual-detector excess noise cancellation concept was

demonstrated experimentally [28], and a variety of non-ideal device effects (quantum

efficiency mismatch, etc.) were analyzed using semiclassical multi-temporal mode

. . . . . .. -



-4-

techniques [29]. Also, Schumaker [30] has shown that the dual-detector single-

mode homodyne arrangement is better than single-detector homodyning for making

non-classical squeezed state observations, as a result of its ability to cancel

out local oscillator excess noise.

Because the quantum treatments in [25] and [30] are confined to single-mode

situations, and the multi-mode results in [28], [29] are in essence semiclassical,

there is as yet no fully quantum treatment of multi-mode dual-detector coherent

optical reception. This paper will develop such a model by generalizing the

results of [18]. Simple explicit representations for all of the relevant output

terms in coherent optical detection with a strong but classically random local

oscillator field will be derived. It will be seen that the previous dual-

detector analyses [25], [28] - [30] neglect excess-noise modulation of the signal

and quantum noise terms, and the first of these modulation effects may significantly

degrade output signal-to-noise ratio in some circumstances. Moreover, because

of the calculational power afforded by [18], our rather general quantum results are

more directly comparable with those of the multi-mode semiclassical theory than

are the more limited results of [25], [30]. Indeed, that comparison is the

primary purpose of this paper.

The paper's core, Section II, is a parallel development of the semiclassical

and quantum statistics of multi-spatiotemporal mode direct, homodyne, and heterodyne

detection using an ideal (except for its sub-unity quantum efficiency) photon

detector. The formulation therein for the coherent optical detection schemes will

assume perfectly stable local oscillators in the semiclassical models, and the .-

corresponding coherent state local oscillators in the quantum models. We use

Section II to delineate the semiclassical theory's regime of validity, and to show,

within this regime, how the combination of the quantum theory's signal quantum

noise, local oscillator quantum noise, the quantum noise incurred because of



sub-unity detector quantum efficiency, plus (for heterodyning only) image band

quantum noise produce the quantitative equivalent of the semiclassical

theory's local oscillator shot noise. In Section III we address coherent

optical detection with classically random local oscillators. The technique of

iterated expectation is used to readily obtain both semiclassical and quantum

results for this case. Single-detector and dual-detector systems are considered,

and our results are compared, in the case of dual-detector quantum homodyning to

those of [25], [30]. Finally, in Section IV we briefly discuss the implications

of our work for squeezed state generation experiments, which is the application

that motivated our analysis.

II. SEMICLASSICAL VS. QUANTUM PHOTODETECTION

The central element of all the photodetection configurations we will consider

is shown in Fig. 1. It is a surface photoemitter with active region

7 = (x,y) e Ad in the z=0 plane, illuminated by a quasimonochronomatic (center

frequency , o) paraxial scalar electromagnetic wave from the half space z<O over

an observation time interval t e T. This detector is assumed to have a constant

quantum efficiency n ver the frequency band containing the illuminating -

field. The output of the detector is a scalar current density J(T,t) for

x z Ad9 t eT. As will be described below, the field characterization we

must employ for the illumination is either classical or quantum mechanical, according

to whether semiclassical or quantum photodetection statistics are sought. Although

we shall neglect internal time constant and noise effects, which are present in

real detectors, our direct detection results will be applicable to photomultiplier

tubes (for which the current gain permits internal noise to be overcome) at

post-detection bandwidths up to the reciprocal anode response time of the tube.

Furthermore, our results will be applicable to coherent optical detection systems

using semiconductor photodiodes (for which the mixing gain overcomes the internal

noise) up to the post-detection bandwidth of the detector. No particular loss of
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generality is entailed by the use of scalar rather than vector fields, with

the caveat that all the coherent optical detection work herein presumes that

the actual signal and local oscillator fields are co-polarized. Finally, by

appropriate spatial integrations, we can collapse our current density observation

to photocurrent observations for a single detector or a multiple-detector

array.

A. Direct Detection

In direct detection, the electromagnetic field to be measured comprises the

entire illumination, and the basic observation quantity is the current density J(7,t).

Semiclassical Model Let E(+)(x,t) be the positive-frequency complex

field (V/m units) associated with the classical scalar electric field incident

on the detector, i.e., E( )(T,t) is the analytic signal of this electric field.

Because of our quasimonochromatic assumption, the Fourier transform 1 of E

E(),,) dt E ()(,t) ej2 t (1)

is non-zero only for Jv - vaI < B, where the bandwidth B is much less than the

center frequency vo. Because of our paraxial assumption, the short time average

power density falling on the point x at time t is

I( ,t) =  (cco/2) E(-)(T,t)E() (7,t), (2)

4here c is the speed of light, Eo the permittivity of free space, and E(- ) =(E(+ )

is the negative-frequency complex field, with denoting complex conjugate.

The standard semiclassical photodetection model [31], in our notation,

presumes that J(T,t) is a conditional space-time Poisson impulse train with

rate function ,(X,t) Rl(T,t)/e where e is the electron charge, and R

is the detector's responsivity (A/W units) at the illumination's center

frequency This means that:

0 . .
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where Iph is the classical photon-flux density

Iph(xt) = E (xt)E(7,t) (5)
I1/2

obtained from the (photons/s) /2/m units positive-frequency complex field

E(7,t) = dv(c 0/2h\) 1/2 6(+)(7,v)e-J2vt, (6)

For all practical purposes in the semiclassical theory, with quasimonochromatic

light we can use .(T,t) = nl(T,t)/h 0 and ;j(7,t) = nlph(7,t) inter-

changeably. This amounts to using v : v in the square-root term of (6),

an approximation whose validity is guaranteed by (1). In the quantum theory,

even with quasimonochromatic light, it is critical to employ the photon-flux

density formulation, see [22].

Quantum Model In the quantum photodetection theory, the classical positive-

frequency complex field E(+)(x,t) is replaced by a positive-frequency field

operator E(+)(,t), whose quantum state is specified by a density operator 0.

The quasimonochromatic and paraxial conditions of the semiclassical theory

become conditions on the density operator, namely, that the excited (non-vacuum

state) modes of E(+)(X,t) lie at frequencies within B of v and propagate

at small angles to the z axis. As in [17], [18], [22], we shall regard the

current density J(T,t) as a classical quantity, corresponding to the macroscopic

output 2 of the quantum measurement performed by the detector of Fig. 1 on

the field E (+Xt). To provide an explicit representation of this quantum

measurement, we must first develop the quantum effective photon-flux density.

Let us convert E()x,t) to a photon-units field operator by defining
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Cc ,c = Ecn,a ]  = [cn a M] o0(

I m (12)

EcnCm = nm.

The fields E and Evac are quantum-mechanically independent, with the latter

having all its modes in the vacuum state. In terms of E and Evac,

the effective photon-flux density operator for the detector is

jph(xt) E't (x,t)E'(x,t) , (13)

with

E'(-x,t) 1/ El2(x,t) + (1-n) I 2 v
c (7,t (14)

The representation theorem of quantum photodetection [18, theorem 1] can

now be stated (in our notation) as follows. The classical current density

J(7,t) obtained from photoemissive detection measures the quantum operator

J(X,t) = eIph(x't) , (15)

i.e., it is proportional to the effective photon-flux density. In somewhat

more detail this means (cf. the semiclassical case):

1) the current density obeys

J(X,t) : e S( -X )6(t-t n) (16)
n n

so it is still a collection of instantaneous emissions of an electron

charge at random space-time points (Xn,tn)}

.n'n

............ .-..... ,....-.".--.-.. . .-- . ...-.>."- . ... " - .- . ..... ,"",."
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viz. N is a conditionally Poisson random variable. Equation (23) gives

the mean and variance of the observed ohotocount to be

, <N> = }d2  p( ) ]2 = <I 12> (24)

and

var(N) = <N> + var (112 (25)

respectively, where the first term on the right in (25) represents shot

noise and the second term on the right in (25) represents excess noise.

In the quantum theory we let &1(7,t) = (A dT)I/2eJ2Dot be the inly

excited mode in (9), so that the density operator for E is

- O = n>Ol ><O (26)

for ol the density operator of mode 1. We then find for the probability

distribution of N [Ill, [17]

PrfN n] = <nlpin> , (27)

where

* a I'aln> = n(n> (28)

defines the photon number states of the first mode of E. If I is the

classical state.

01 = d2  p(a) a><al (29)

with p(a) being the probability density from the semiclassical theory

. . . * * . * . - "
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(cf. Eq. (17)), then (27) reduces to (23) as expected. Thus, in this case the

semiclassical theory is quantitatively correct in its prediction of the photon

counting probability distribution. It is nevertheless physically incorrect, in

that it ascribes the photon counting fluctuations to shot noise, whereas they are

actually a manifestation of the illumination field's quantum noise. For

example, were pl = lk><kl where 1k> is the k-photon number state (a

non-classical state), then we would get

Pr[N=n] = 5nk (30)

from (27), whence

<N> = k , (31)

and

var(N) =0, (32)

for the photon count mean and variance. Here the field state is an eigenket of

our observation operator, so there is no uncertainty in the measurement

outcome. This sub-Poissonian behavior cannot be obtained from the semiclassical

theory, because for all p(a) the excess noise term in (25) will be non-negative,

forcing var(N)> <N> to prevail.

B. Homodyne Detection

The configuration w'. shall consider for single-detector multi-spatiotemporal

mode homodyne detection is shown in Fig. 2. The signal field to be detected is

combined, through a lossless beam splitter of intensity transmission c, with a

perfectly stable local oscillator field on the surface of the Fig. I photodetector.

The resulting current density, Jm(7 ,t), is our homodyne detection output,

whose statistics we shall characterize below. By spatial integration of our results

over the detector's active region Ad' we can use our model to describe single-

I.. *~ * - ** *. -d~ -''. *.. .. . -. . . .
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detector homodyning; the extension to dual-detector homodyning will be made in

rj Section III.

Semiclassical Model The total classical photon-units complex field incident on the

photodetector is given by5

E(E,t) - e1/2Es(xt) + (-C) 1/2E Lo(,t) , (33)

for xeAd , tcT, in terms of a (potentially random) weak signal field

E S(,t), and a deterministic strong local oscillator field ELO(i,t). The

latter has a classical photon-flux density

IphLQ(xt) = ELO (7 ,t)ELo(X,t) , (34)

that greatly exceeds that of the former

IphS(7,t) = ES(7,t)Es(7,t) , (35)

for XEAd,tcT Thus, the rate function driving the photodetector is, from

(4), (5), (33)-(35), approximately

U(',t) = n[(l-)IphLO(,t)+2[E(l-_)JI/ 2Re(ES(7,t)ELO*( ,t))] , (36)

It then follows, from the Central Limit Theorem for high density shot noise [331,

[341, that at very large values of the local oscillator classical photon number

- dx I (37)NphLO Ad dt phLO(xt)
d

the homodyne detection current density Jhom(7,t) is a conditional Gaussian

process. Specifically, conditioned on knowledge of the signal field
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fE (X't) ixcAd trT1 I ho(7,t) is the sum of three current densities:

1) a homodyne-mixing current density signal term 2en[Wel~)]112 Re(E S(i,t)ELO*(iX,t)):

2) a direct-detection local oscillator bias current density en(l-e)rphLOC'Z't)

and

3) a local oscillator shot noise current density, which is a zero-mean

spatiotemporal non-stationary white Gaussian noise process Jshot (7,t) with

covariance function

~j ShOt(x 1,tl )Jshot(x2,t2)'

In order to connect the preceding multi-spatiotemporal mode formulation with

more familiar single-detector multi-temporal mode results, let us consider the

statistics of the single-detector homodyne photocurrent

lh (t) = dix Jh f(,t) ,(39)

d

assuming that

E~o~t (P /hv A )l/2 e- j2 ,.,)ot (40)
LOLO a d

0

corresponding to a normally-incident plane wave local oscillator of power P
LO'

Here we find that, conditioned on knowledge of the signal field, i (t)
horn

comprises a signal current

ig t 2en[P o~~)/hv AdJ1 1 2Re(j dx E (TX,t)e 3 2.'TV o , (A1)
d
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plus a zero-frequency bias current

ibias = ei(l-E)PLO/hvo , (42)

plus a zero-mean stationary white Gaussian process shot-noise current

ishot(t )  with spectral density ei bias (A2/Hz)

The signal current is a frequency-translated (to baseband) replica of the

normally-incident plane wave component of E S(T,t) that is in phase with the

1 local oscillator field. The bias current is the zero-frequency photocurrent

produced by the local oscillator field. The noise current is the local-oscillator

shot noise, whose spectrum follows the well known Schottky formula [35].

Quantum Model In the quantum model, Eq. (33) becomes an operator-valued expression

12,t) E s,t) + (l-E)1/2EkO(x,t), (43)

giving the field operator E that drives the detector in terms of the signal

field operator ES and the local oscillator field operator ELO The density

operator a for E is assumed to be

S 0 LO (44)

where oS is an arbitrary signal field density operator and
L LO "LO

I is a multi-mode coherent state local oscillator density operator. The latter

corresponds to a mean local oscillator field

ELO(X,t) <oELo(xt) .LO> 7kn n(  '
t )  

(45)

when ELO is expanded using the mode set jn as was done for E in Eq. (9).
L n

.".
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The strong local oscillator condition of the quantum theory,

tr(pSES'(7,t)Es(7,t)) - IELO(7,t) 12 , (46)

is assumed to prevail (cf. Eqs. (34), (35)), with a very large average local

oscillator photon number

NLO = f dx f dtIELo("t) 2 " 1 , (47)

Ad  7

(cf. Eq. (37)).

To obtain the effective photon-flux density operator measured by the detector

we adjoin to E from (43) a quantum-mechanically independent vacuum-state

field operator Evac ,see Eqs. (11) - (14). We can now give a fully quantum

characterization of the classical homodyne current density Jhom(7 ,t) ,by

translating the results of [18, theorem 2] into our notation. The strong local

oscillator condition implies that this classical current density measures the

quantum operator

Jhom(Xt) = en(l-c)EjO(X,t)ELO(7,t) + 2eCn(l-)]I/2 Re [n)I/2 S(7,t)

+ (1-n) 1/2vac(7,t)] E 0Lo(X,t) } (48)

Moreover, because NLO-1, the local oscillator direct detection term in (48),

en(l-E)EL (t)E (Wt) , yields classical observation values comorising a bias

- 2
current density en(l-s)IELO(x,t)l plus a local oscillator quantum noise current

density, which is a zero-mean spatiotemporal non-stationary white Gaussian noise

process JLOq(xt) with covariance function

J ( t )J (72' ,t ) > I
Ie ( - )2 E O , , ' : - , t - a
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Furthermore, under this same condition 6 , the second term on the right in (48)

simplifies to a homodyne-mixing signal operator 2en[e(l-)J 1/2 Re(Es(-x,t)ELO(7 ,t))

plus a sub-unity quantum efficiency (n<l) quantum-noise current density. The latter

current density is a zero-mean spatiotemporal non-stationary white Gaussian

noise process J vac(,t) with covariance function

<Jvac(xltl)dvac(72 ,t2)>

e 2 n(l-n(l-e)EL0((l,tl)2S( I-X2 )6(tI-t 2); (50)

Jvac is statistically independent of J LOq* Thus, the classical homodyne current

density Jhom (7,t) measures the operator

Jhom(7,t) = en(l- ){ELO(X,t) 2 + JLOq(Tt)

2en[(l-C) 1/ 2 Re(Es(T,t)EL*(xt)) + Jvac (,t). (51)

The first term on the right in (5T) is the local oscillator bias current density,

the second term is the classical representation of the local oscillator's quantum

noise contributed by the en(l- )ELO ELO measurement, and the last term is the

classical representation of the n<l quantum noise contributed by the

2e[f(l-i)(l- )]I/ 2 Re(E vac(x,t)ELo(x,t)) measurement. The signal field

contribution to Jhom(Xt) cannot be simplified further without knowledge of

the density operator iS In general, this term will contribute signal field

quantum noise to the homodyne observation, as will be seen below.

Comparison To facilitate comparison of the semiclassical and the quantum theories

of homodyning, we shall restrict our consideration to the single detector case.

First, we need the quantum characterization of the homodyne photocurrent (39),

which can be obtained by spatial integration of the results just presented. we

assume a normally-incident plane wave mean local oscillator field

U - " "."*
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ELO(x,t) = (PLo/hvoAd) / 2 e-J 2 1vot (52)

and we find the ihom(t) measures the operator

ihom(t) ibias + iLoq(t)
1/2 j27rvot

+ 2en[PLOE(l-)/hvoAd]I/2Re(f dxEs(x,t) e ) +  vac(t) (53)
;d

Here, ibias is given by (42), and iLOq and ivac are statistically

independent zero-mean stationary white Gaussian noise processes with spectral

densities en(l-c)ibias and e(l-n)ibias ,respectively.

Physically, ibias is the local oscillator bias current, iLOq is the local

oscillator quantum-noise current, and i a is the n<l quantum-noise current.

Equation (53) differs from the semiclassical description in two respects: the

homodyne-mixing signal term involves the quantum field operator Es rather

than the classical field ES ; the noise in the homodyne observation is a

combination of local oscillator quantum noise, 'n<l quantum noise, and signal

quantum noise, rather than simply being local oscillator shot noise. We know,

from the direct detection discussion, that the semiclassical photodetection model

is quantitatively correct if the density operator o for the field E illuminating

the detector represents a classical state. This situation occurs, under (44),

if and only if o ,the signal field density operator, is a classical state

' d2 asPs(O5 ;a ><a (54)

,or the multi-mode signal field coherent state in modal expansion of

E similar to Eq. (9), with PS being a classical probability density. When (54)

applies, the homodyne-mixing signal term in (53) can be given a classical

representation akin to that employed for the Evac mixing term in going from
rersntto
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(48) to (51). In particular, for a classical 2ignal field state, the quantum

theory of homodyning predicts that

ihom(t) = ibias iLOq(t) +

2en[PLOE (I-E)/hv Ad]1/2 Re( dEs(x,t) e J2 7 rvot) +
2Ad

sq tW + i vac(t) ,(55)

where

ES(X,t) <Sjss(7,t)Ias> (56)

is the classical mean signal field when the state of ES is las> and

isq(t) is a zero-mean stationary white Gaussian noise current of spectral

density enei bias that is statistically independent of iLOq  and ivac

The classical field ES is, in general, a random process with probability

density PS(S;aS ) in modal expansion form. The current isQ (t) is the

classical representation of the coherent state signal field quantum noise as

observed through the measurement operator (53). Note that

i'(t) i LOq(t )  isq(t )  + ivac(t )  (57)

is a zero-mean stationary white Gaussian noise process of spectral density

ei bias ,in quantitative agreement with the semiclassical ishot (t) result.

Of course, the interpretation of the origin of the noise in homodyning is

different in these two theories. Local oscillator shot noise is a semiclassical

fiction; the noise seen in homodyne detection (with an ideal local oscillator)

is local oscillator quantum noise, plus 7<l quantum noise, plus signal quantum

01



-22-

noise. Moreover, in the limit nE - 1 with n(I-e)NLo > 1 ,the two former

contributions disappear, and homodyning gives a direct quantum measurement of

the signal field component that is coherent in space and in phase with the

local oscillator [18]. It is this characteristic that makes homodyning

attractive for squeezed state applications [16] - [19].

C. Heterodyne Detection

The configuration for single-detector multi-spatiotemporal mode heterodyne

detection, shown in Fig. 3, mimics that employed for homodyne detection. The

only differences are that the signal field is centered at frequency vo  vIF,

the local oscillator is centered at frequency v0  ,and passband filtering of

the current density is used to select beat frequency components in the vicinity

of the IF frequency viF (vIFT>>l will be assumed). The bandwidth B of

the signal field will be taken to be much less than vIF ,and we shall concern

ourselves with characterizing the statistics of the current density

Jhet(Xt). The results we need are easily developed by injecting the frequency

offset v IF into the preceding homodyne work.

Semiclassical Model In Eq. (33) let us make the frequency offset of the signal

field explicit by writing

Es(x,t) = FS(X,t)e-J2(v o+")IF)t , (58)

where FS  is a baseband complex signal field of bandwidth B The results

following (37) now provide the semiclassical statistics for heterodyning, namely,

conditioned on knowledge of the baseband signal field {Fs(T,t)

XEAd , tFT7 , Jh t(7 ,t) is the sum of three current densities:

1) a heterodyne-mixing current density signal term
2e [ (1- 1] /2 Re(Fs(-X,t)e'J '(o+ F jL 2-,t ; )t-.

2er[E: o IF t
.. LO:
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2) a direot-detection local oscillator bias current density

en(l-)IphLO(7,t) ; and

3) a local oscillator shot noise current density Jshot(7,t) characterized

by (38).

The single-detector heterodyne-photocurrent

het(t) dX Jhet(-Xt) , (59)

assuming ELO is given by (40), then comprises a signal current

isig(t)=2en[P o¢(l-e)/ hvoAd]I/2Re(T d7FS(C,t)e-J2vIFt) , (60)
Jd

plus a bias current ibias from (42), plus a zero-mean stationary white Gaussian

process shot-noise current ishot(t) with spectral density eibias'

The heterodyne current (59) is thus a frequency translated (from

I +uF to VIF) version of the normally incident plane wave component of

ES plus the usual bias and shot noise terms, Because of the frequency offset

JIF between the signal and the local oscillator fields, both the in-phase and

quadrature (relative to the local oscillator) components of the signal field

contribute to the output observations.

Quantum Model Here we suppose that the only non-vacuum state modes of the

field operator ES lie within a bandwidth B of the frequency vo+ IF*

However, because of zero-point fluctuations, the quantum version of (58) is

*E2(,t) = FS(7,t)e J2 (o+ IF)t F (7,t)e'J21(vo'rF)t , (61)

where F3  and FI are baseband complex signal and image field operators.

Physically, the image band, being vIF Hz below the local oscillator's frequency,

contributes quantum noise to Jhet even when it is unexcited r18j, C223,

We shall assume that FS and FI are quantum-mechanically independent, with

• .. . • . .
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7
the latter having all its modes in the vacuum state .Wc now find, from

jthe quantum homodyning work, that Jhe(x~t) measures the operator

Jhet(Xt) eT -e1 ) E LO RXt)I + j Loq(Xlt)

+2e[El -S) 1/ReFI~~te- ~l(,)0-VIFtELO*Xl)] Iva(T,t) ,(62)

where E LO' JLOq , and Jvac are as given in (51). We r.an use the vacuum-state

nature of to obtain the classical representation

* 2e~(l-) 1 /2' - j2 1rb oVFt
2eC:Is] Re(F (-X,t)e- ovFt LO *(T,t))

*~ - ~ (Xst)/21/ 9 (63)

where JIq is a zero-mean non-stationary white Gaussian classical process

corresponding to the image-band quantum noise, with covariance function

< j q( 1 t)Jlq(x2 't2 )>

(en) c(l-s)!EL(lt) x(71 72)5(t1-t2) (64)

Thus, the quantum description of the single-detector heterodyne photocurrent

iht(t) from (59) is that it measures the operator

n ett ibias + LOq~t + tq ()2 + iva c~

- E L~(-:)hjAd dxFS (x,t)e 2 IFt) (65)
JAd
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where bias iLOq and i ) are as in (53) and iiq(t) is a zero

bhre ia , ad vac I

mean white Gaussian noise process (the classical representation of image-band

quantum noise) of spectral height encibias.

Comparison Suppose the density operator for FS is a classical state, i.e.,

its density operator 1F obeys

r 2dFa P (s(. ;a.s ) S><aS 1 (66)

where PF is a classical probability density, and J!S> is the multi-mode
S

Glauber coherent state for the modal expansion

Fs(xt) n n n(x 't- rJ2 (vo vIF)t (67)

n S

with denoting summation over modes n lieing within bandwidth B of
n

*2-i frequency vo+ iF • Here we can obtain a classical representation of the

F term in (65) which reduces the quantum description of the heterodyne
S
photocurrent to

(t) t) + iq(t)/2 / 2 + ivac(t)ihet~t =bias +i LOq( I

+2enLP o(- /~Ad] / Re ( iddX F s( ,te'J"I

iq212 Sq2

where the total noise current, iLOq  vac

LTq tq-/

• " . -.- " - . ." .' . . . , • • - . . . • • . . • . • . " - ." .. " ," ." ". ".' . . " - '. .. ".. . . . . . . . . . .-. ._, . .,.. . . . . . ."-
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is a zero-mean white Gaussian process with spectral density eibias

in quantitative agreement with the semiclassical theory, and

SFs(x',t) ISjFS( X,t) laS> (69)

is the classical baseband signal field envelope FS associates with the

coherent state JaS > . Note that half of the ES quantum noise entering

het comes through the signal field operator S  and the other half

comes through the image field operator F1.*

III. EXCESS NOISE EFFECTS AND DUAL-DETECTOR OPERATION

In this section we shall extend the results of Section II for coherent optical

reception to include classical excess noise on the local oscillator field and

dual-detector operation. It is convenient to begin with a presentation of

dual-detector results in the absence of excess noise.

A. Dual-Detector Coherent Optical Reception

Suppose the homodyne/heterodyne configurations of Figs. 2 and 3 are augmented

by the use of another quantum efficiency n detector on the previously unused

output port of their beam splitters, see Fig. 4. We take the classical output

field for this port to be

E(-,t) = -(- ()/2Es(X,t) + 1/2ELO(T,t) (70)

in the semiclassical model, and use the corresponding operator-valued

expression in the quantum model. Rather than treat the full multi-spatiotemporal

mode situation, we shall restrict our attention to the photocurrents

il(t) and i2(t) obtained by spatial integration of the current densities

J (x,t) and J2 (,t) produced by detectors 1 and 2. We shall assume a

perfectly stable (i.e, deterministic) classical local oscillator field

-. . --. * .. * *I*
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E LO (7,t) F FLO (7, t)e j21Tv 0 t (71)

with baseband complex envelope F LO in the semiclassical model, and a

Glauber coherent state quantum local oscillator with mean field

tr( PLOE LO(xtt)) = F LO (7,t)e&32 7rv ot (72)

*with baseband complex envelope F LO in the quantum model. Under these

conditions the results of Section II can be used to show that the following

statistics apply.

.Homadyne Detection In homodyning, the signal field is centered on v 0 9 so,

because of (71),(72), it is convenient to introduce baseband signal complex

* envelopes via

Es(WX,t) F 5 (7X,t)e-j 2 r1 0t (73)

* and

Es(-x~t) =F 5(TX,t)eJ-ro a, (74)

for the semiclassical and quantum cases, respectively. Now we have, semi-

classically, that

i1(t) =en(I-s) JA d X1FLO( X t)i

*+ 2enC(-,-{ 1/ ReF~( d7tl 2 J1 1 nFhOtl(-t) 75
Add

. . *1/2
. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .
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and

i 2(t) e1n~{ dxjFo(_X,t)I 2
A d

-2e[El-C1'Z~efdx FS(7,t)FL( t)
dL

Add

for the homodyne photocurrents, where n shotl Wt and n shot2(tW are statistically

independent identically distributed zero-mean stationary white Gaussian noise

processes of unity spectral density. Equations (75) and (76) have the usual

bias plus mixing signal plus local-oscillator shot noise interpretation. Note

that the beam splitter phase shift between the output ports forces the mixing

*signals to be 180 0 out of phase. Also, the independence of the local-

* oscillator shot noises follows because they are generated from~ deterministic

illumination of two different detectors.

For the quantum case, we have that i (t) and i(t measure the operators

il(t) en(l-S)A dx(FLO(x,t)!

Ad

r - 2 1/2+ en(l-,E)C! dxjF (x,t)l n Wt
LO LOq

d -j 2 21/2
+ eHn(l-n)(l-s) JA dxILO(x,t)l I n vacl(t) ,(77)

*and

Ad

-2ence(0 -)3lI2Re(J d7 F (7,t)F o(TIt)

A- - - - - -S L O * .

d . . . . . . . . .
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neI A diiFLo(Tt)1 /2 n LO
q (t)Ad

+e[n(l -n)c diIFLo( ,t)I 2]1/2nvac2(t), (78)

d

where nLq (t) n t) nvac2 (t) are statistically independent identically

distributed zero-mean stationary unity-spectrum Gaussian processes. The familiar

bias plus quantum mixing signal plus local-oscillator quantum noise plus

n<l quantum noise interpretation applles to (77), (78). As in the semiclassical

model, the mixing term appears 180 °  out of phase in the two photocurrents. No

such phase shift appears on the nLOq term, as this noise arises out of the

direct detection of ELO. Indeed, except for scale factors, the local-oscillator

quantum noise contributions to i1(t) and i2(t) are completely correlated. The

n<l quantum noises are, on the other hand, statistically independent because they

arise from different detectors. Finally, when the signal field is in a classical

state these quantum results can be shown to be in quantitative agreement with

the foregoing semiclassical formulas.

Heterodyne Detection For heterodyning we use (58), rather than (73), to introduce

a baseband signal complex envelope for the semiclassical analysis. We then find

that

if(t) = en(l-2) d  ..

IdxAFLO(x't)i

+2enE 0l-E)]I/2Re( dVFs(-X,t)Fo (x,t)e-J IVFt
Ad

"A 2]I/2n~shotld4eL,(l- )! dxIFLo(x,t)12 1 2nht(t) , (79)
JAd ii-."

. . . . . .- C - * .- .]
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and

i 2( W Jn f d-jF LO (X, t) 2

d

-2en~e (1C )] /Re(Jf d7F S 7, t) FLO (7, t)e j2 1vIFt

+e(U:. dxiF LO (7,t) 12 1 1/2 n ht()'(80)

r with interpretations as given following (75), (76). In the quantum case we

use (61) instead of (74) and obtain the measurement operators

i ItW - erI(l-e) JA dxiFLO(x,t)I2

p +2einLe(l-) Re(J dxFs(x, t)F *(7,t)eJ I~

2 /2 (t
+en(l-F-) EJAd dxIF LO( x t) I n LOqW

2 1/261F~~~ LO ,t I nvacl~t)

d

+e~(-~2 1  -dIF o(,t)I 2 n/ (81)

)A d

for detector 1 and

i~6F =-~) J dxFtx~)1
-2encsL 1  Re(I.,J ^S LO

~~'A

~eH(1-~)cj- 2 1/2, ()
+e~nl-IC ~jF O~xt~lI nvac2(t

Jd FLO(T )x /n Iq~
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for detector 2. In Eqs (81), (82) the interpretations and comments following

(77), (78) are applicable. The noise nlq(t) , which represents image-band

quantum noise, is another zero-mean stationary unity-spectrum white Gaussian
process. It is statistically independent of nLoq(t) and n vac(t) for

j = 1,2, and appears with a sign reversal in iI and i2  because it arises

from the mixing term involving F1 "

B. Local-Oscillator Excess Noise

The extension of the results of Section IlIA to incorporate classical

excess noise on the local oscillator is extraordinarily simple, because of the

form the preceding results have been cast in. Specifically, for the semiclassical

theory we need only make the baseband local oscillator complex envelope FLO

in (71) a complex-valued random process with known statistics. Then the homodyne

and heterodyne results of the semiclassical theory, namely Eqs. (75), (76)

and Eqs. (79), (80), respectively, become conditional statistics assuming FLO

9
is known. Unconditional statistics follow, via iterated expectation C38],

from averaging over the local oscillator fluctuations, as will be illustrated

below. In a similar manner, classical local-oscillator excess noise can be

injected into the quantum model by making oLO a classical-state density operator

for which FLO, the average baseband local-oscillator complex envelope given the

local oscillator is known to be in the multi-mode coherent state IcLO> , is a

complex-valued classical random process. The quantum homodyne and heterodyne

results, Eqs. (77), (78), and (81), (82), respectively, are now conditional

characterizations given FLO. Unconditional statistics are again obtained by

averaging over the local oscillator fluctuations. 
10

To illustrate our excess noise results, and compare them with relevant prior %%

work C25], [28]-C30], we shall consider a single spatial mode/multi-temporal

•. .o .
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mode local oscillator, for which FLO in the semiclassical theory and FLO in

the quantum theory are both of the form (PLO(t)/hvoAd)1/2 exp(-JoLO(t)) , where

PLO(t) and sLO(t) are classical random power and phase fluctuations. For

convenience, we shall assume that these fluctuations are the polar decomposition

of a stationary complex-Gaussian random process. We shall also assume that the

signal field, in both the semiclassical and quantum pictures, is statistically

independent of the local oscillator. Finally, we shall limit our consideration

to the differenced output currents il(t) - i2(t).

Homodyne Detection Under the preceding conditions we have the semiclassical

result

i1 (t) - i2(t) = en(l-2)PLO(t)/hv0

+4en Cc(l-)PLO(t)/hv oAd]1/2Re(d d7Fs(Tt)eJ0LO(t))
Ad

+eC-n(l_ )P o(t)/h,)o] /2 nsh t (t) 0 -

LO n0 shot +

-e Ir-PLO(t)/hvo 1/ 2 nshot2 (t) , (83)

and the quantum result

il(t) - i2(t) = en(l-2E)PLO(t)/hvo

4erc (l-)PLO(t)/hvo Ad] 1 /2Re Ad dxFs(T,t)eJ0LO(t))

1d

+en(l-2F)(P LO(t)/h0)/2nLOq (t)  """/

eC"(l-n)(l-'_)PLO(t)/h,)o0]1/ nac(t)

-eC'(l-I)cP LO (t)/ho ]I/2 nvac2(t) .(84) '
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In both (83) and (84), the first term on the right equals a mean bias current

en(l-2E)<PLO(t)>/hvo plus a local oscillator power-fluctuation excess

noise en(l-2e)(PLO(t)-<PLO(t)>)/hvo. Both of these are exactly nulled when

the beam splitter is 50/50, i.e., when F= 1/2. The second term on the right in

(83) and (84) is the homodyne-mixing signal current; local oscillator randomness

both amplitude and phase modulates this term. The remaining terms in the

semiclassical result (83) are the shot noises, now modulated by local oscillator

power fluctuations. The remaining terms in the quantum result are the local

oscillator quantum noise and the n<l quantum noises; these too are modulated

by the local oscillator power fluctuations. Note that when e = 1/2 the local

oscillator quantum noise contribution vanishes.

Let us further specialize the quantum results by supposing that the only

excited mode of FS is the monochromatic plane-wave pulse (AdT) 1/2

ACAd , tEJ , and that as is the annihilation operator for this mode. Matched

filtering of the differenced output currents then yields a measurement of

M e'lO Cil(t) - i2(t)]dt , (85)

where normalization by the electron charge has been used, for convenience, to

make the observation values dimensionless. We assume that the mean function

and covariance function of the stationary complex-Gaussian local-oscillator

random process
Y(t) (PLO(t)/hoAd)1/2 exp(-JTLo(t)) (86)

are

1/2 (7[(l-, )<NLo>/AdT] (37)

and
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In addition to exhibiting the potentially significant random modulation

of the mixing term, our formulation, (84), shows another effect suppressed

in [25] and [30]. This is the random amplitude modulation of the local oscillator

and n < 1 quantum noises by the classical amplitude noise of the local

oscillator. Although this modulation does not explicitly enter the signal-to-

noise ratio , it does make the last three terms in (84) non-Gaussian random

processes, an effect which will modify digital communication error probability

calcutations somewhat.

Heterodyne Detection The semiclassical description for the differenced output

currents in heterodyne detection is

i1(t) - i2(t) = en(l-2z)PLO(t)/hv0

+4en [(l-e) PL(t)/hvAd]I/2Re({ dFS(Tt)e-j (2nvIFt -*LO(t)))

+ecn(l-E:)P o(t)/h'jo ]I/2 nhol) W

1/2

-e[nPLo(t)/hvoI 2nho 2(t) , (95)

and the quantum description is

(1t) - i2(t) en(l-2E)PLO(t)/hv0

1/2 2r ' W

I - P ) h'o  Ad IRe c d F ( ,t)e J 2 IF LO-LO( t"-.-.

+e! (l 1-2c ) (P LO (W/hv 0) 1/2n Loq Wt

e[ I-n)(I-E)P LO t)/h,)o]I1/2 nvacl~t W
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-e[n(l-n)CPLo(t)/hvo]1 /nvac2 (t)

+en[2s((l-th)PLO (t)/hd rIeq, (96)

These results differ from the corresponding homodyne results, (83) and (84), in

only two respects. First, the mixing terms (second term on the right in (95)

and (96)) beat the signal field to an intermediate frequency not baseband,

and so they sense both quaaratures of the signal field. Second, the quantum

result (96) gains a noise contribution from the image band quantum noise through

nlq(t) . The local oscillator excess noise (and its cancellation when C= 1/2)

and the random modulation of the signal and noise terms by the local oscillator

fluctuations thus continue to be present in the heterodyne case, i.e., the

interpretations given for the homodyne situation aoply here as well. Once again,

the relevant previous work on dual detector systems [25], [28], [29] does not

include all the effects contai-ned in our treatment; the random local oscillator

modulation of the signal and noise terms is absent in the above analyses.

As an illustration of these omissions, let us compare our semiclassical answer (95)

assuming a deterministic monochromatic plane-wave pulse signal FS(x,t) =

S dfor xEAd,trT, with the corresponding E=1/2, eqLu* quantum

efficiency result of Abbas and Chan [29]. The latter claim, in our notation, that

the differenced output currents consist of a mean current

1 /2Re -27 % )  , 97

<(il(t) - i2(t))>= 2enT- <NLO>l /Re(aSe3
2  JF(9

embedded in an additive zero-mean white Gaussian noise process with bilateral

spectral density

S(f) e2 <NLO>/T (98)

'We have, using (86) (87) in (95), that the differenced output currents consist
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of a mean current

< (t) - i (t))=2enT-1 L(I-y)<No>]1 /2Re(ase'J 21rv*, (99)

plus a conditionally non-stationary zero-mean white Gaussian shot noise process

that, given the local oscillator power waveform, has covariance function

K(t,s) = e2n(PLo(t)/hvo)6(t-s) , (100)

plus a signal dependent zero-mean stationary Gaussian noise process
i"(t) = 2en(Ad/T)1/ 2Re[.S(Y(t) - m_)eJ 2 rFt] (lOT)

with covariance function

Ki,,i,,(T) = 2(en/T)2 Y<NLO>I.CS2 k(T) cos( 2nvtF) . (102)

When Eq.(l00) is averaged over the P statistics it reduces to a stationary --
LO

white noise spectrum (98) , however the random PLO fluctuations make the

noise non-Gaussian, albeit in a minor way if y<<l. The noise current

i"(t) comes from the random modulation of the mixing term and may present a

significant degradation. Consider a high quality (y<l), slowly fluctuating

local oscillator (k(T) 1 I for HKI. T) and the matched filter processor generating

M e- lI (i 1 (t) - i2(t))21/2cosC2- ,IF a , (103)"0

then the Abbas and Chan model gives a signal-to-noise ratio

SSNRi , (104)

whereas we have that

. .. .,
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When u,v are real valued, (107) implies that iB;u,v> satisfies the

Heisenberg relation

2 

(0

< &aI > <Aa 2 > > 1/16(18

with equality, as does the familiar coherent state la>, Unlike the coherent

state, which gives <A;12> = <Ai22> = 1/4, (107) shows that there is an

asymmetric noise division between the quadratures (a noise squeezing) in the

state 16;u,v >, with the 1>7w-noise quadrature being less noisy than a coherent

state. This noise reduction can be used, in principle, to effect important

performance improvements in optical communications [16] - [19] and precision

measurements L20] - [23).

As yet, there have been no experimental observations of squeezed state

light. Theoretical studies, which employ varying degrees of idealization,

indicate that such states may be generated by degenerate four-wave mixing (DFWM)

[39) - [42), as well as a number of other nonlinear optical processes [14], [15],

[43 - [46). We are presently working on a continuous-wave DFWM experiment using

homodyne detection to generate and verify the quadrature noise squeezing. In

this experiment, a single frequency-stabilized laser will be used to provide

all the input beams to the four-wave mixer, as well as the local oscillators

for dual-detector homodyne detection. The results of this oaper permit the

expected photocurrent statistics for this experiment to be derived, including

the effects of tile laser's residual amplitude and phase fluctuations. Soecifi-

cally, an iterated expectation approach is used, as in Section Ill. The photo-

current statistics are first obtained assuming the laser outout to be a par-

ticular coherent state. This entails a calculation of the four-wave mixer

output state, along the lines of [40], followed by a calculation of the sort

Performed here in Section ILIA. To averaqe over the input laser fluctuations,

gas"-
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we assign to the coherent state value for this laser a classical probability

distribution. We can then proceed as in Section IIIB, except that the state

of the signal field operator in the homodyne apparatus is now dependent on the

coherent-state value of the local-oscillator field in that apparatus, because

both fields are derived from the same laser.

0

,. . . . . . . . . . . . . . . ."
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Footnotes

1. The convention we use for this Fourier transform is necessitated by

the accepted quantum-optics definition for what constitutes a positive-

frequency field.

2. For a photomultiplier tube, the internal current gain amplifies the current

we are analyzing by a sufficient amount to warrant its treatment as a classical

entity. In the coherent optical detection cases that follow, the mixing gain

produced by the strong local oscillator has a similar effect, see [22].

3. A classical state is either a Glauber coherent state or a classically random

mixture of such states. In either case, the density operator o has a

proper P-representation (17). The terminology arises, see below, because a

classical state ; gives rise to the same statistics in quantum photodetection

theory as found for a classical field in semiclassical photodetection theory.

4. Because our idealized detector model neglects internal noise sources (dark

current shot noise, thermal noise, etc.) N from Eq. (21) corresponds to the

output of a pulse-discriminator/counter applied to the output current

dX J(-xt). In other words, Eq. (21) models the output of an ideal (unity

dquantum efficiency) photomultiolier-tube/pulse-counter setup.

5. Our choice for the beam splitter transformation agrees wi-th that employed in

[18], and implies that the field leaving the other port of this optical element

is -(I-,) 2 Es(7,t)+ 2E(7,t). Other beam splitter relations (see. e.g.

[25] , [30]) are equivalent to ours after redefinition of the input and

output planes.

6. A critical aspect of the strong local oscillator condition acting through the

measurement ooerator (48) is that the mean local oscillator field and its
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quantum noise both contribute to Jhom through the direct detection

II term, but only the mean local oscillator field (not its quantum noise)

contributes to Jhom through the mixing term.

7. Very interesting noise reductions can accrue when the signal and image

bands are quantum-mechanically dependent [22],.

8. Because the in-phase and quadrature components of FS are non-commuting

observables, the image band noise enters into heterodyning in order to enforce

the Heisenberg uncertainty principle on ideal simultaneous observations of

these incompatible quantities (see [36], [37]).

9. Implicit in this conditioning statement is the fact that the local oscillator

must, with very high probability, remain sufficiently strong to ensure the

validity of the Section II theory. Also note that the signal field statistics

may depend on the value of the local oscillator field, such as occurs in a

laboratory experiment when the same laser is used to obtain both the sional

and local oscillator beams (see Section IV).

- 10. The local oscillator fluctuations must not be such as to invalidate the

Section II theory for any state _LO >  that occurs with appreciable probability.

Also, the signal state (density operator) may depend on the value of the local

oscillator field, if, for example, both beams originate from the same laser

'see Section IV).-

11. For example, to keep this added noise below 10% (in standard deviation) of

, the coherent-state signal quantum noise when <a3 a,> = 10 , we can tolerate no

more than 0.3% local oscillator amplitude fluctuation. This limitation may

* be significant in precision measurement applications for which signal-to-noise

*ratios far in excess of 40dB are sought.

0"

0
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Figure Captions

Fig. 1 Geometry of an idealized surface photoemitter of active region Ad.

Fig.. 2 Configuration for optical homodyne detection.

Fig. 3 Configuration for optical heterodyne detection.

Fig. 4 Configuration for dual-detector coherent optical detection.
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APPENDIX III

DEGENERATE FOUR-WAVE MIXING

LINESHAPES IN SODIUM VAPOR UNDER PULSED EXCITATION

Prem Kumar

Research Laboratory of Electronics

Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

Degenerate four-wave mixing (DFWM) lineshapes are investigated

in sodium vapor near the D2 resonance line using nearly Fourier

transform limited pulses. At low pump intensities sub-Doppler reso-

lution is obtained. When the Rabi frequency associated with the

pump intensity becomes equal to the ground state hyperfine frequency

separation of sodium, each component of the double-peaked D.FM

spectrum further splits into two components each. Adiabatic follow-

ing model explains the near-resonant intensity dependence of the

DFWM signal but is insufficient to explain the jhole structure.
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The splitting of the DFWM lineshape as shown in Figs. 2b-2d occurs when the Rabi

frequency corresponding to the pump intensities is close to the ground state

hyperfine splitting of the sodium atom which is 1.77 GHz. Moreover, the splitting

of the lower frequency peak occurs at approximately twice the pump intensities

than that of the higher frequency peak. This suggests that the multiple level

nature of the sodium atom is playing a role. This is not surprising because the

spectrum of the pulses used in this experiment is much narrower than the ground

state hyperfine splitting of sodium. For our 200 MHz, 4 ns pulses, sodium can be

well modelled as a three level atom of A type. The DFWM mechanism in our experi-

ment is more complicated than it seems because at low pump intensities of

Fig. 2a, although sub-Doppler resolution is obtained, the peaks are not separated

by 1.77 GHz as would be the case in a cw DFWM experiment when the spectrum of the

laser used is much narrower than the ground state hyperfine splitting. A detailed

comparison with the theory can only be made when Maxwell-Bloch equations are

solved in the transient regime for the backward DFWM configuration taking the I

three level nature of the medium into account.

This research was supported in part by the Office of Naval Research.
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9. All intensity measurements refer to peak intensities of the pulses which

are spatially in TE .m . The absolute value could be off by as

much as a factor of 5.

10. G. Grynberg, B. Kleinmann, M. Pinard, and F. Trehin, Opt. Commun. 47, 355

(1983).

11. 0. Grischkowsky, in Physics of Quantum Electronics, Vol. II, eds.

S.F. Jacobs, M. Sargent III, J.F. Scott and M.O. Scully (Addison-Wesley,

Reading, 1975) p. 437-452. For nearly Fourier transform limited pulses,

the AF condition is 5

A dA/dti+T e1 1 + [ s h 0 T21 1 + MAz h -)1

which is satisfied for 4 ns pulses with T 2 10 MHz and iv-v 0 2.3 GHz.
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Figure Captions:

1. Schematic of the experimental apparatus. YAG = frequency doubled Nd:YAG

laser, DL = cw dye laser, M = total reflector, BS = beam splitter,

DET = detector, HWP = half wave plate, PBS = polarization beam splitter,

PMT = photo-multiplier tube, PC = phase conjugate beam, RP = backward

pump beam, FP = forward pump beam, PB = probe beam.

2. DFWM lineshapes at various pump intensities. Vertical scale is arbitrary

and is linearly proportional to the DFWM signal, plotter scale factors are

labelled. Also superimposed are the fluorescence spectra in parts a, b,

and g. Pump intensities are labelled in kW/cm 2 in each plot. Start fre-

quency in parts f and g is slightly shifted.

3. Dependence of the DF'WM signal on the pump intensities.
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